
RefactorOps

Scope Starter Pack

The standardized way to define, defend, and control scope — from first draft to change

requests — so delivery stays predictable.

By Michael Smith — Founder, RefactorOps

“Turning engineering chaos into profit.”

Why this matters

Most scope pain is self‑inflicted: assumptions never written down, exclusions left implicit,

and changes absorbed quietly. This pack fixes that. You’ll write scope the same way every

time, track every change, and align owners so decisions have one Accountable person.

• Clear, reusable structure for SOWs and statements.

• Explicit out‑of‑scope lists to kill surprises.

• Scope Ledger + SCRs so creep becomes a business decision, not a gift.

Rule of thumb: Write the boundaries before the estimates. If it isn’t written, it doesn’t exist.

How to use this

1. Fill out the Scope Summary and the Standard Scope Framework.

2. Create a shared Scope Ledger on day one.

3. Require an SCR for any change to $/timeline/deliverables.

4. Run the Alignment Checklist before kickoff.

5. Publish the Scope Policy so no one can claim ignorance later.



1) Scope Summary

Project Name

Date / Version

Prepared By

Reviewed By

Objective

Acceptance Criteria (high‑level)

In‑Scope Items

Out‑of‑Scope Items



Risks / Constraints

Assumptions

Dependencies

2) Standard Scope Framework

Use this outline to define scope the same way every time. It becomes your SOW backbone.

BUSINESS & TECHNICAL CONTEXT

FUNCTIONAL & TECHNICAL DELIVERABLES



Explicitly Out of Scope

Assumptions & Dependencies

Risk & Mitigation

Post‑Launch Expectations

ACCEPTANCE CRITERIA





3) Scope Ledger

Log every request. Decide transparently. Prevent creep. Keep this visible to the whole team.

DATE REQUESTOR CHANGE SUMMARY IMPACT (HRS/$) DECISION NOTES

4) Scope Change Request (SCR)

Use when a change impacts budget, timeline, or major deliverables. CE/PM/Tech align

before client escalation.

Request Title

Date

Requested By

Reference (Ledger Row / Ticket #)

REQUEST SUMMARY

Estimated Impact (Hours)



Estimated Cost ($)

Schedule Impact (Days)

DECISION & APPROVALS

ROLE NAME DECISION DATE NOTES

Engineering

Delivery (PM/BA)

Client Engagement

Client



5) “Yes, but …” Responses & Say No Examples

REQUEST SUGGESTED RESPONSE

“Can we add this one more

feature?”

“Yes, but we’ll need to push something else or move the launch

date. Which is more important?”

“Can we keep this old system

too?”

“Yes, but we’ll need additional budget to maintain both versions.”

“Can we create three different

designs?”

“Yes, but we must choose one before development starts or we’ll

delay the build.”

“Can we scope that later?” “Yes, but that puts us at risk of rework. Want to do a 30‑minute

workshop now?”

“Can we make it dynamic?” “Yes, but QA must test all variations and we’ll need more creative

support.”



SAY NO — EXAMPLES

EXAMPLE REQUEST WHAT TO SAY WHY?

“Add Google oAuth too?” “Sounds good. Let’s log it in the

Scope Ledger to ensure it’s

accounted for.”

Adds a new auth provider; likely

not in original scope.

“We’ll sync this to

Salesforce now, right?”

“Let’s double check. I think our

scope assumed no external

integrations.”

Breaks an assumption; scope

needs re‑evaluation.

“Build a reporting

dashboard while we’re

at it.”

“That sounds big. Let’s flag it in the

Scope Ledger for review.”

Brand new request; likely out of

original scope.

“Let users upload files

here.”

“May require resources we didn’t

plan for. Logging for review.”

Introduces security/perf/storage

risk and extra work.

“Personalize content in

this launch.”

“We’ll log it and evaluate how it

affects current priorities.”

Late change likely pushes

current priorities.



6) Scope Alignment Checklist

ITEM OWNER DONE

Business objective clearly defined

Success metrics documented

Assumptions validated with Tech Lead

Explicit out‑of‑scope items reviewed

RACI confirmed (one “A” per decision)

Scope Ledger created and shared

Timeline reviewed with client

Scope sign‑off received

7) Scope Policy (RefactorOps Standard)

1. All projects must use this Scope Framework with explicit exclusions.

2. Every new idea/change is logged in the Scope Ledger.

3. Engineering, Delivery, and Client Engagement co‑own scope control.

4. SCRs are mandatory when budget/timeline/deliverables are impacted beyond tolerance.

5. Scope is reviewed at least bi‑weekly during delivery.

RefactorOps



Turning engineering chaos into profit.


